Recurrent Bayesian Classifier Chains for Exact Multi-Label Classification

Walter Gerych, Thomas Hartvigsen, Luke Buquicchio, Emmanuel Agu, Elke Rundensteiner

Multi-Label Classification

Data of the form x, c_1 , c_2 , ..., $c_L \sim (X, C_1, C_2, ..., C_L)$ such that ci = 1 if class i applies to x, and $c_i = 0$ otherwise.

Applicable in a variety of domains:

Multi-label classification method benefit by modeling label dependencies, instead of treating each class as an independent binary task:

State-Of-The-Art: Recurrent Classifier Chains

Recurrent Classifier Chains (RCCs) sequentially predict classes, conditioning each prediction on the preceding classes

Limitations:

- · Noisy conditioning: predictions conditioned on independent classes
- Error propagation: mistake made on 1 class effects all subsequent predictions
- · Long term memory: early classes have diminishing effect on late classes

Our Approach: Recurrent Bayesian Classifier Chains

Recurrent Bayesian Classifier Chain (RBCC) key components:

- 1. Infer Bayesian network of label dependencies
- 2. Modify RCC architecture to only use parent classes for inference

Tackles challenges by:

- · Eliminating noisy conditioning
- · Minimizing error propagation
- · Removing need for long-term memory

Learning Label Dependency Graph

- We model class interdependencies by assuming Bayesian network structure \mathcal{G}_C
- Decompose joint probability as P(C₁, C₂, ..., C_L|X) = Π P(C_i| Pa_{GC}(C_i))
- · Challenge: X is typically continuous; difficult for network learning algorithms
- Solution: Replace G_C with G_E , for G_E such that $Pa_{GC}(C_i) = Pa_{GE}(E_i) \cup \{X\}$

Our choice for \mathcal{G}_{E} : graph of class *errors*

 $C_i = k_i(X) + E_i => E_i = C_i - f(x); k_i$ is found by maximizing data likelihood

• New model for joint probability: $P(C_1, C_2, ..., C_L|X) = \Pi P(C_i|Pa_{GE}(E_i), X)$

RBCC Model

- We construct a dictionary of class dependencies from G_E, where each key is a class and each value is the set of corresponding parents
- For each instance, the prediction of each class c_i is made using a recurrent network that steps through the value of each parent.
- The internal state of the hidden network is reset after each class prediction to avoid noisy conditioning

Experimental Evaluation

Compared Methods

- Recurrent Classier Chains (RCC)
- Topological-Sort RCC (TS-RCC)
- Order-Free RCC (OF-RCC)
- Bayesian Classifier Chains (BCC)
- Binary Decomposition (BD)

Classification Performance

Evaluation Metrics	Methods					
	RBCC (Ours)	RCC	TS-RCC	OF-RCC	BCC	BD
Subset Accuracy ↑	0.240 ± 0.008	0.212 ± 0.002	0.192 ± 0.010	0.169 ± 0.009	0.210 ± 0.000	0.202 ± 0.002
Hamming Loss ↓	0.186 ± 0.003	0.204 ± 0.001	0.209 ± 0.004	0.218 ± 0.004	0.199 ± 0.001	0.189 ± 0.000
Macro-F1 ↑	0.556 ± 0.008	0.526 ± 0.004	0.506 ± 0.004	0.569 ± 0.004	0.551 ± 0.005	0.517 ± 0.008
Micro-F1 ↑	0.670 ± 0.006	0.639 ± 0.002	0.628 ± 0.004	0.662 ± 0.004	0.653 ± 0.003	0.638 ± 0.003

Table 2: Classification results for the Yelp dataset. Bolded is best performer, underlined is second best.

Our mothod outporforms all others on strictest multi-label motrie pearly.

- Our method outperforms all others on strictest multi-label metric, nearly always outperforms state-of-the-art on other metrics
- · Additional results on 5 other datasets is available in our paper

Performing Better on Large Label Set

 The difference in performance between our method and a comparable RCC increases as the number of possible classes increases

Conclusion

In this work we:

- Identified flaws with state-of-the-art multi-label approach (RCC)
- Proposed new multi-label approach that leverages label dependence and independence to improve RCC training and inference
- · Experimentally showed the practical improvement of our approach

Acknowledgements

- · WPI WASH Research group
- WPI DAISY Lab
- DARPA WASH Grant #FA8750-18-2-0077

References

Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017
Zhang, Min-Ling, et al. "Multi-label learning by exploiting label dependency." KDD 2010.
Shang-Fu Chen, et al. "Order-free RNn with visual attention for multi-label classification." AAAI 2018.
TSoumakas, Grigorios Tsoumakas aet al. "Multi-label classification: An overview." IJDWM 2007.